Tristan Guillot Observatoire de la Côte d'Azur www.obs-nice.fr/guillot - · Interior structures: principle - Jupiter as a benchmark - Saturn, Uranus and Neptune - · Enrichments of the atmospheres: possible scenarios - · The role of probes # Jupiter as a benchmark #### Interior models: principles #### Constraints from gravity ## Outstanding questions # The importance of water # Saturn Uranus & Neptune #### Internal structures #### Link atmosphere-interior-core mass - Less clear for Saturn than Jupiter due to a relatively smaller envelope - · Absent for Uranus and Neptune: - no direct link between the composition of the atmosphere and that of the rock/ice core. - Mass of H-He atmosphere is only 1-4 M_{\oplus} # Atmospheric abundances: what do they tell us? #### Tropospheric compositions #### Tropospheric compositions #### The enrichment of the atmospheres - · 3 possible causes: - Efficient delivery of solid planetesimals - This most certainly has to occur early during the formation process - Core erosion - Would explain why Jupiter appears to have a smaller core than Saturn - Formation of giant planets in an enriched protosolar disk - The noble gases are keys to distinguish between the different scenarios - But we need their abundances in at least 2 planets... #### The "Nice" model of giant planet formation ### The "Nice" model of giant planet formation **Pisk mass** Pisk enrichment Planet mass Planet enrichment Jupiter: plain Saturn: dashed # Perspectives... #### Probe measurements and scientific rationale | | Jupiter | Saturn | Uranus | Neptune | | |--|---|--------------------------------------|--|---------|--| | He | 1 | H-He phase diagram;
J/S evolution | He fractionation in the protosolar disk (thermal evaporation)? | | | | Major species except H₂O | 1 | 1 | Atmospheric enrichment; Meteorology; Planetesimal delivery | | | | H ₂ O | Solar system water inventory; Planet formation; Meteorology | | Dynamics of the deep atmosphere | | | | Noble gases | Test formation scenarios; Envelope enrichment by planetesimal delivery or gas accretion of a chemically evolved protosolar disk | | | | | | Disequilibrium species (eg CO, PH ₃ , GeH ₄) | (√) | (✔) | Constraints on mixing in the deep atmosphere and compositions | | | | Isotopic ratios:
D/H
¹⁶ O/ ¹⁷ O/ ¹⁸ O
¹⁴ N/ ¹⁵ N, ¹² C/ ¹³ C | Timing of planet formation; Location of planet material in the protosolar disk | | | | | | Extinct radionuclides with gas-loving daughter species: e.g. ⁴¹ Ca→ ⁴¹ K; ¹²⁹ I→ ¹²⁹ Xe | Ice/Rock ratio; Timing of planet formation | | | | | #### Probe measurements and scientific rationale | | Jupiter | Saturn | Uranus | Neptune | | |--|---|---|--|---------|--| | He | 1 | H-He phase diagram;
J/S evolution | He fractionation in the protosolar disk (thermal evaporation)? | | | | Major species except H ₂ O | 1 | | Atmospheric enrichment; Meteorology;
Planetesimal delivery | | | | H₂O | Solar system water inventory; Planet formation; Meteorology | | Dynamics of the deep atmosphere | | | | Noble gases | 1 | ✓ Test formation scenarios; Envelope enrichment by planetesimal delivery or gas accretion of a chemically evolved protosolar disk | | | | | Disequilibrium species (eg CO, PH ₃ , GeH ₄) | (√) | (✔) | Constraints on mixing in the deep atmosphere and compositions | | | | Isotopic ratios:
D/H
¹⁶ O/ ¹⁷ O/ ¹⁸ O
¹⁴ N/ ¹⁵ N, ¹² C/ ¹³ C | Timing of planet formation; Location of planet material in the protosolar disk | | | | | | Extinct radionuclides with gas-loving daughter species: e.g. ⁴¹ Ca→ ⁴¹ K; ¹²⁹ I→ ¹²⁹ Xe | Ice/Rock ratio; Timing of planet formation | | | | | #### All giant planets should eventually be probed! - Our four giant planets each have unique features - Planet formation was a very stochastic process (e.g. work from Morbidelli et al. 2005) - The early Solar System may have had Jupiter, Saturn, Neptune, and Uranus as the furthest planet!